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  A BSTRACT  
 Antagonists of the kappa opioid receptor were initially 
investigated as pharmacological tools that would reverse 
the effects of kappa opioid receptor agonists. In the years 
following the discovery of the fi rst selective kappa opioid 
antagonists, much information about their chemistry and 
pharmacology has been elicited and their potential thera-
peutic uses have been investigated. The review presents the 
current chemistry, ligand-based structure activity relation-
ships, and pharmacology of the known nonpeptidic selec-
tive kappa opioid receptor antagonists. This manuscript 
endeavors to provide the reader with a useful reference of 
the investigations made to defi ne the structure-activity rela-
tionships and pharmacology of selective kappa opioid 
receptor antagonists and their potential uses as pharmaco-
logical tools and as therapeutic agents in the treatment of 
disease states.  
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   INTRODUCTION 
 The opioid receptor system consists of 3 types of heteroge-
neous, G-protein – coupled, opioid receptors mu ( � ), delta 
( � ), and kappa ( � ), which have been pharmacologically 
characterized and cloned. 1-4  Each opioid receptor type has 
selective agonists and antagonists that bind to and produce 
effects unique to that individual receptor type. The proto-
typical agonist acting through opioid receptors is morphine 
( 1 ) ( Figure 1 ), though not selective, it functions as a mu 
opioid agonist. Mu opioid agonists produce the classic opi-
oid effects: analgesia, euphoria, respiratory depression, 
constipation, nausea, cough suppression, and the develop-
ment of tolerance and dependence. 5  The prototypical opioid 
antagonist naloxone ( 2 ) ( Figure 2 ) functions as a mu opioid 
antagonist, though it is also not selective for mu opioid 

receptors. Selective mu opioid antagonists such as cyprodime 
( 3 ) ( Figure 3 ) reverse the effects of mu opioid agonists 
only and are used as tools in pharmacological assays. 5  ,  6  
Selective delta opioid agonists such as SNC 80 ( 4 ) 
( Figure 4 ) produce weak analgesia, mild convulsions, and 
immunostimulation. 7  Selective delta antagonists such as 
naltrindole ( 5 ) ( Figure 5 ) are being investigated for their 
potential use as immunosuppressants and modulation of the 
tolerance effect of mu opioid agonists. 7             
Selective agonists and antagonists for kappa opioid recep-
tors have also been investigated. Selective kappa opioid 
agonists such as U50,488 ( 6 ) ( Figure 6 ) produce analgesia, 
diuresis, dysphoria, and show antipruritic activity, 8  whereas 
selective kappa opioid antagonists are being explored for 
their effects in the treatment of a wide variety of areas 
including cocaine addiction, 9  depression, 10  and feeding 
behavior, 11  and have been proposed as a treatment for psy-
chosis and schizophrenia. 12  In this manuscript we present 
currently known chemical classes of selective kappa opioid 
antagonists, their pharmacology, and ligand-based struc-
ture-activity relationships (SAR).   
 While this manuscript focuses on nonpeptidic selective 
kappa opioid receptor antagonists, several related issues 
with peptidic opioids will briefl y be addressed. Four differ-
ent types of endogenous mammalian peptides 13  have been 
identifi ed that act upon opioid receptors: endorphins, 
enkephalins, endomorphins, and dynorphins. The dynor-
phin family of peptides acts predominantly as kappa opioid 
receptor agonists and peptidic antagonists for the kappa 
receptor are known. 14  ,  15  Those interested in an excellent 
discussion of peptidic kappa opioid antagonists should 
refer to the analgesics chapter in Burger ’ s Medicinal Chem-
istry. 16  Further, the non-selective kappa opioid antagonist 
buprenorphine will not be covered due to its mu opioid 
agonist actions. Those seeking information on buprenor-
phine should seek John Lewis ’  excellent book of the same 
title (Cowan and Lewis 17 ). Subtypes of kappa opioid recep-
tors have been proposed through the results of pharmaco-
logical assays, but only one type of kappa opioid receptor 
has been cloned so far. 2  Further, it has been shown that 
receptor dimerization between the kappa and delta opioid 
receptors produces a dimer that possesses the pharmaco-
logical profi le of the kappa-2 subtype, 18  and that the kappa-1 
and kappa-2 receptor subtypes may be different affi nity 
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states of the same receptor, 19  which may explain the phar-
macological fi ndings of subtypes of kappa opioid recep-
tors. 20  Therefore, this article will not  differentiate between 
subtypes of kappa opioid receptors. Target-based modeling 
of kappa opioid antagonists has been performed 21-27  and an 
excellent review is available, 28  however this review 
will focus on ligand-based SAR. We endeavor herein to 
cover nonpeptidic, selective kappa opioid antagonists 
including the most recent chemical and pharmacological 
developments.  

  COMPETITIVE KAPPA OPIOID ANTAGONISTS 
 Antagonist selectivity for the kappa opioid receptor has 
been a goal of chemists and pharmacologists since the rec-
ognition of the different subtypes of opioid receptors. 20  
Early accomplishments in developing kappa opioid antag-
onists produced Mr 2266 ( 7a ) ( Figure 7 ) and WIN 44,441 
(quadazocine) ( 7b ). 29  While occasionally used 30  for their 
historical value as kappa opioid antagonists, these com-
pounds are not selective 20  antagonists for the kappa opioid 
receptor. The fi rst nonpeptide selective kappa opioid 
antagonist, triethyleneglycolnaltrexamine (TENA) ( 8 ) 
( Figure 8 ), was developed by Erez et al. 31  TENA ( 8 ), a 
derivative of  � -naltrexamine ( 8a ), contains 2 naltrexone 
( 9 ) ( Figure 9 ) pharmacophores linked by a spacer. While 
superior to Mr 2266 ( 7a ) and quadazocine ( 7b ), TENA ( 8 ) 
possesses only a modest selectivity for kappa receptors 
over mu and delta opioid receptors 32  ( Table 1 ). Although 
TENA ( 8 ) was not an ideal selective kappa opioid antago-
nist, it was very useful as a lead compound in the develop-
ment of selective kappa opioid antagonists. Numerous 
structural modifi cations of the spacing linker 33-35  involv-
ing the substituents, length, fl exibility, and conformation 

  Figure 1.    Structure of morphine.   

  Figure 2.    Structure of naloxone.   

  Figure 3.    Structure of cyprodime.   

  Figure 4.    Structure of SNC80.   

  Figure 5.    Structure of naltrindole.   

  Figure 6.    Structure of U50,488.   
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led to a short, rigid, pyrrole ring between the 2 pharmaco-
phores as the optimal spacer. This spacing linker produced 
the selective kappa opioid receptor antagonists 36  binaltor-
phimine (BNI) ( 10 ) ( Figure 10 ) and norbinaltorphimine 
(norBNI) ( 11 ).           
 While developing these compounds, Takemori and Por-
toghese 37  ,  38  used the  “ message-address ”  concept, 39  origi-
nally applied to proteins, and his  “ bivalent-ligand ”  
approach (2 pharmacophores covalently attached to one 
another) in the development of kappa opioid antagonists 
TENA ( 8 ) and norBNI ( 11 ). 21  ,  40  Later, the message address 
concept was used in the devel opment of other kappa opi-
oid antagonists. 22  ,  41  ,  42  The   “ message-address ”  concept is 
used to explain the selective binding of ligands to different 
subtypes of receptors within a general receptor class (here 
the mu [ � ], delta [ � ], and kappa [ � ] subtypes of the gen-
eral class of opioid receptors). Briefl y, the  “ message ”  
 portion (scaffold) of the ligand  provides the affi nity for the 
general class of receptor, and the  “ address ”  portion, a 
chemically specifi c function, confers specifi city for the 
individual receptor subtype ( Figure 11 ). Examples include 
the transformation of the nonselective opioid antagonist 
naltrexone ( 9 ) to the selective delta opioid antagonist 
 naltrindole ( 5 ), 37  ,  38  and the transformation of naltrindole 
( 5 ) to the kappa specifi c antagonist 5 ′ -guanidinonaltrin-
dole (GNTI) ( 12 ). 22  For an in an in-depth discussion of the 
 “ message-address concept ”  please refer to the eloquently 
presented argument and discussion in Takemori and 
 Portoghese, 37  Portoghese, 38  and more current, though 

 condensed, discussions by Sharma et al 23  and Thomas 
et al. 41     

  NORBNI AND ANALOGS 
 In 1987, Portoghese et al 29  ,  36  reported the selective kappa 
opioid receptor antagonists binaltorphimine (BNI) ( 10 ) and 
norbinaltorphimine (norBNI) ( 11 ); the latter has become the 
prototype kappa opioid antagonist ligand. Both ligands dis-
played high selectivity and potency for kappa opioid recep-
tors ( Table 2 ). A subsequent paper 43  describes ( – ) norBNI 
( 11 ) compared with its  “ unnatural ”  (+) enantiomer ( 13 ) 
( Figure 12 ) and its (±) diasterisomer ( 14 ) ( Figure 13 ). The 
difference in the molecules is best appreciated by the per-
spective drawings in  Figures 14  and  15 . This series showed 
that (+)-norBNI ( 13 ) was inactive while (±)-norBNI ( 14 ) 
displayed increased potency, but decreased specifi city as a 
kappa opioid antagonist ( Table 2 ). A series of analogs 
( 15 – 23 ) ( Figure 16 ) of norBNI ( 11 ) was synthesized to test 
replacements of the 3, 14, 3 ′ , and 14 ’  hydroxyls, and the 
N-17 and N-17 ’  substituents 44  ( Table 3 ). Additionally, 
Schmidhammer ’ s group reported 2 norBNI ( 11 ) analogs 45  
( 24, 25 ) ( Figure 17 ) and 2 BNI ( 10 ) analogs 46  ( 26, 27 ) 
 ( Figure 18 ) with the 14 and 14 ’  positions occupied by 
methoxy groups ( Table 4 ). Another study 47  presented data 

  Figure 7.    Structures of Mr 2266 and WIN 44,441 – 3.   

  Figure 8.    Structures of TENA and  � -naltrexamine.   

  Figure 9.    Structure of naltrexone.   
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on replacements of the nitrogen in the pyrrole ring with the 
thiophene ( 28 ) ( Figure 19 ) and pyran ( 29 ) ( Figure 20 ) ana-
logs of norBNI ( Table 5 ). Also, 2 octahydroisoquinoline 
BNI ( 10 ) analogs 40  ( 30, 31 ) ( Figure 21 ) have been synthe-
sized and tested ( Table 6 ). Another study 48  of norBNI ana-
logs analyzed the results of sequential replacements ( 32 – 42 ) 
( Figure 22 ) of the N-17 ’  substituent ( Table 7 ) and 2 more 
( 43, 44 ) with only binding data. 21  A 3 ′ -dehydroxy analog 49  
of norBNI ( 45 ) ( Figure 23 ) has also been prepared ( Table 8 ). 
A radio ligand form of norBNI ( 46 ) ( Figure 24 ) has also 
been synthesized 50  and possesses high binding affi nity and 
selectivity for kappa receptors.                                       

 The overall conclusions that can be drawn from these ana-
logs suggest a structure activity relationship as follows. 
Only one antagonist pharmacophore is necessary for kappa 
antagonist activity, as suggested by data on compounds  11 , 
 14, 15 – 18,  and  31 . A second basic nitrogen is necessary for 
kappa opioid antagonist activity, although the functionality 
of the nitrogen may vary, suggested by data on compounds 
 11, 14, 23, 30 – 44 . One phenolic hydroxyl is necessary for 
activity (although there is loss of potency when the second 
hydroxyl is masked or eliminated), as suggested by data on 
compounds  11, 18, 19, 22, 23, 27, 31, 45 . The 14 and 14 ’  
hydroxyls can be methylated or acetylated and still retain 
activity suggested by data on compounds  19, 20, 24, 25 . 
The pyrrole spacer can have increased size (sulfur) and be 
functionalized (methylated) and retain activity, as suggested 
by data on compounds  10, 11, 26, 28, 29 .  

  Table 1.        Opioid Antagonist Activities of TENA ( 8 ) in the GPI and MVD *,32 

 IC 50  ratio
Antagonist Ethylketozocine ( � ) U50,488 ( � ) Morphine ( � ) DADLE ( � )   � / �  
Naloxone ( 2 )  7.2  -  46.8  0.2
TENA ( 8 )  19.6  111.5  4.2  1.2  4.7 (26.6)
Mr 2266 ( 7a )  9.6  9.9  7.9  1.5  1.2 (1.3)
quadazocine ( 7b )  4.6  -  16  -  0.3

     * GPI indicates guinea pig ileum assay; MVD, mouse vas deferens assay.    

  Figure 10.    Structures of Binaltorphimine and 
norBinaltorphimine.   

  Figure 11.    Structure of guanidinenaltrindole detailing the 
message-address concept.   

  Table 2.        Opioid Antagonist Activities of BNI (2), norBNI (3) 
and Stereoisomers in the GPI and MVD *,36,43      

 K e  in nM K e  ratio
Antagonist ( � ) ( � ) ( � )  � / �   � / � 
BNI ( 10 ) 0.14 11 5.7 79 41
(-)-norBNI ( 11 ) 0.41 13 20 32 49
(±)-norBNI ( 14 ) 0.08 1.1 1.3 14 16
naltrexone ( 9 ) 5.5 1.0 24 0.2 4.4

     * GPI indicates guinea pig ileum assay; MVD, mouse vas deferens 
assay; norBNI, norbinaltorphimine.    

  Figure 12.    Structure of (+)-norBinaltorphimine.   
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on a butyl amidine ( 72 ); similar but less potent than norBNI 
( 11 ), in the [ 35 S]GTP � S assay (kappa K i  (nM) = 0.12, 0.17, 
and 0.039 for compounds  55 ,  72 , and  11 , respectively) ( Fig-
ure 27 ). Portoghese also presented (Sharma et al 23 ) a sequen-
tial substitution of the guanidine moiety ( 73 – 75 ) ( Figure 28 ) 
at each position of the naltrindole ( 5 ) scaffold. The results 
showed the 4 ’  GNTI ( 73 ) was inactive (K e  >1000 nM at all 
opioid receptors), 6 ’ -GNTI ( 74 ) showed selective kappa 

  Figure 14.    Perspective model of (-)-norBinaltorphimine.   

  Figure 15.    Perspective model of (±)-norBinaltorphimine.   

  Figure 16.    Structures of norBinaltorphimine analogs.   

  INDOLOMORPHINAN KAPPA OPIOID ANTAGONISTS 
 In 1993, Portoghese ’ s group (Olmstead et al 51 ) presented a 
series of 3 amidines ( 47 – 49 ) ( Figure 25 ), based on the nal-
trindole (NTI) ( 5 ) pharmacophore, which converted the 
selective delta opioid antagonist naltrindole ( 5 ) into selec-
tive kappa opioid antagonists ( Table 9 ). Subsequently, the 
same group reported the preparation of guanidinonaltrin-
dole 22  (GNTI) ( 12 ); the 5 ′ -guanidinyl derivative of naltrin-
dole. GNTI ( 12 ) ( Figure 11 ) showed increased affi nity, 
selectivity, and potency over norBNI ( 11 ); with pA 2  values 
of 10.40, 8.49, and 7.81, respectively, for kappa, mu, and 
delta cloned human opioid receptors in Chinese hamster 
ovary (CHO) cells. 52  A series of GNTI analogs 24  ( 12, 50 – 71 ) 
( Figure 26 ) were synthesized with GNTI being the most 
potent and selective of the series ( Table 10 ). ANTI ( 58 ) 
would eventually be tested 10  as a peripherally active GNTI 
( 12 ) derivative. Lewis ’  group published data (Jales et al 53 ) 

  Table 3.        Opioid Antagonist Activities of norBNI ( 11 ) and 
analogs in the GPI and MVD *,44  

 K e  in nM K e  ratio
Antagonist Conc. nM ( � ) ( � ) ( � )  � / �   � / � 
BNI ( 10 )  20 0.14   11  5.7  79  41
norBNI ( 11 )  20 0.41   13  20  32  49
 15  100 0.91  ≥ 250  ≥ 143 (pa)  ≥ 275  ≥ 157
 16  20   a   a
 17  10   a   a
 18  100   a   a
 19  100
 20  100 0.38   42   12  111  32
 21  20 7.1
 22  200 1.3   38   45   29  35
 23  200 1.9   21   41   11  22
naltrexone ( 9 )  100 5.5 1.0   24 0.2  4.4

  

  Figure 13.    Structure of (±)-norBinaltorphimine.   



The AAPS Journal 2005; 7 (3) Article 71 (http://www.aapsj.org).

E709

opioid agonist activity (51-fold greater potency than mor-
phine in the guinea pig ileum assay (GPI) and reversed by 
norBNI ( 11 ), and 7 ’ -GNTI ( 75 ) showed selective delta 
antagonist activity (K e  = 0.96 in the mouse vas deferens 
assay [MVD]). Husbands ’  group presented a series of 
amides, amidines, and urea analogs of GNTI (Black et al 54 ) 
( 76 – 94 ) ( Figures 29 ,  30 ,  31  and  32 ) ( Table 11 ). These 
 compounds, especially the ureas, showed less selectivity 
and potency than norBNI in the [ 35 S]GTP � S assay. Follow-
ing this work, this group presented a series of  guanidine-
substituted analogs of GNTI 55  ( 95 – 109 ) ( Figures 33 ,  34 ,  35  
and  36 ) ( Table 12 ). In 2003, Ananthan et al 56  published a 
pyridomorphinan kappa opioid antagonist ( 110 ) ( Figure 
37 ); while only slightly preferring [ 35 S]GTP � S (K i  = 1.0, 

6.1, and 6.5 nM for kappa, mu, and delta, respectively), this 
compound ( 110 ) serves as another lead compound in the 
development of future kappa opioid antagonists.                                   
 The results from the indolomorphinan analogs seem to con-
fi rm the SAR found in the norBNI analogs (single pharma-
cophore, 2 basic nitrogens, spacing ring[s], phenolic 
hydroxyl), also adding, perhaps, that increasing the basicity 
of the second basic nitrogen leads to increased potency, as 
suggested by compounds  12, 58, 67 .  

  NON-EPOXYMORPHINANS 
 In 2001 Carroll ’ s group presented the phenylpiperidine-
based, selective kappa opioid antagonist JDTic ( 111 ) ( Figure 
38 ), a trans-(3 R ,4 R )-dimethyl-4-(3-hydroxyphenyl)piperidine 
(Thomas et al 57 ). While many 4-phenylpiperidine N-substi-
tuted derivatives have been previously prepared, 58  ,  59  none 
were selective kappa opioid receptor antagonists until JDTic 

  Figure 17.    Structures of norBinaltorphimine analogs.   

  Figure 18.    Structures of Binaltorphimine analogs.   

  Figure 19.    Structure of Pyran analog of norBinaltorphimine.   

  Figure 20.    Structure of Furan analog of norBinaltorphimine.   

  Table 5.        Opioid Antagonist Activities in the GPI and MVD *,47      

 K e  in nM
Antagonist ( � ) ( � ) ( � )  � / �   � / � 
norBNI ( 11 ) 0.55 14 10.6 25 19
naltrexone ( 9 ) 5.5 1.0 24 0.2 4.4
 28 2.6 41 33 16 13
 29 2.6 39 36 15 14

 * GPI indicates guinea pig ileum assay; MVD, mouse vas deferens 
assay; norBNI, norbinaltorphimine.    

Table 4. Opioid Antagonist Activities of norBNI and two 
analogs in the GPI and MVD *,45,46 

 K e  in nM Selectivity ratio
Antagonist ( � ) ( � ) ( � )  � � �   � � � 

norBNI ( 11 ) 0.02 27 22 1350 1100
 24 0.6 88 4.6 147 8
 25 0.03 0.36 2.3 12 77
 26 0.11 5.7 6.1 52 6

    * GPI indicates guinea pig ileum assay; MVD, mouse vas deferens 
assay; norBNI, norbinaltorphimine, a = agonist; pa = partial agonist.
       * GPI indicates guinea pig ileum assay; MVD, mouse vas deferens 
assay; norBNI, norbinaltorphimine.   
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( 111 ). JDTic ( 111 ) was based on a previous nonselective com-
pound ( 112 ) that was kappa preferring ( Table 13 ). The same 
group followed this discovery with the publication of a series 
of phenylmorphan kappa opioid antagonists 60  ( 113 – 117 ) 
( Figure 39 ); the best ( 113 ) was similar, but less potent than 
norBNI (kappa antagonist K e  = 0.24 and 0.04 nM, respec-
tively, in the [ 35 S]GTP � S assay with cloned human opioid 
receptors). In a follow-up SAR study of the JDTic pharmaco-
phore, a series of compounds 41  ( 118 – 126 ) ( Figures 40  and  41 ) 
( Table 14 ) was presented that highlighted the necessity for 2 
basic nitrogens, similar to norBNI ( 11 ) and GNTI ( 12 ), and 
for and 2 phenolic hydroxyls for kappa opioid antagonist 
activity in the [ 35 S]GTP � S assay. In another study, Carroll 
presented a comparison of the dehydroxy analogs of norBNI 
( 45 ) and JDTic ( 111 ) (Thomas et al 49 ) ( Table 15 ). This analy-
sis showed both compounds lose potency when the second 
hydroxyl group is deleted from their structure. Husbands 
recently presented a series of amino tetralin derivatives 
(Grundt et al 61 ) ( 127 – 141 ) ( Figure 42 ) that produced a nonse-
lective kappa opioid antagonist ( 141 ) ( Table 16 ). This work is 
similar to that of Thomas et al, 59  which produced the kappa 
opioid antagonist ( 112 ) and led to the development of the 
selective kappa opioid antagonist JDTic ( 111 ). These results 
likely indicate the amino tetralin pharmacophore is poised for 
development of selective kappa opioid antagonists.                  

  IRREVERSIBLE KAPPA OPIOID ANTAGONISTS, 
UPHIT AND DIPPA 
 In an effort to develop site-directed affi nity labels of the 
kappa opioid receptor, the Rice group (de Costa et al 62 ) dis-
covered UPHIT ( 142 ) ( Figure 43 ). UPHIT ( 142 ) was based 

on their previous compound 63  ( 143 ) that was able to irre-
versibly inhibit [ 3 H]U69,593 binding to kappa opioid recep-
tors with an IC 50  of 100 nM, but was unable to irreversibly 
inhibit kappa opioid receptors when administered intracere-
broventricularly (i.c.v.). Based on the design of U50,488 
( 144 ), a potent selective kappa opioid agonist, UPHIT con-
tains an isothiocyanate acetylating group and was able to 
irreversibly inhibit 98% specifi c binding of [ 3 H]U69,593 to 
guinea pig kappa opioid receptors compared with control 
when 100  � g was administered i.c.v. 62  Portoghese ’ s group 
followed UPHIT ( 142 ) with DIPPA ( 145 ) ( Figure 44 ) 
(Chang et al 64  ,  65 ), which also contained an isothiocyanate 
acetylating group, though located on a different portion of 
the molecule. DIPPA ( 145 ) displayed irreversible kappa 
opioid antagonism in vitro , B  max  (fmol/mg) [ 3 H]U69,593 of 
3.55 (87% decrease in number of [ 3 H]U69,593 binding sites) 
and kappa opioid agonism in the GPI and MVD (IC 50  = 23.8 
and 14.9 nM, respectively). DIPPA ( 145 ) also displayed 
kappa opioid agonism in vivo with an ED 50  ratio of 16.7 at 
kappa opioid receptors [(ED 50  of DIPPA [1.53  � mol] in 

  Table 6       . Opioid Antagonist Activities in GPI and MVD *,40    

 IC 50  ratio Selectivity ratio
Antagonist ( � ) ( � ) ( � )  � / �   � / � 
norBNI ( 11 ) 181 8.3 10.4 22 17
 30 1.6 1.7 9.2 0.9 0.2
 31 40 1 1.1 40 36

   * GPI indicates guinea pig ileum assay; MVD, mouse vas deferens 
assay; norBNI, norbinaltorphimine.    

  Figure 21.    Structures of Octahydroisoquinoline analogs of 
norBinaltorphimine.   

  Figure 22.    Structures of asymmetrical analogs of 
norBinaltorphimine.   
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norBNI [ 11]  treated mice [norBNI dose of 12.25  � mol/kg 
s.c. 3.5 hours before DIPPA] divided by the control ED 50 ) 
(ED 50  ratio 1.25 and 3.03 for mu [ � -FNA] and delta [NTI] 
receptors)] in the mouse abdominal stretch assay. 65  How-
ever DIPPA ( 145 ) also displayed kappa opioid antagonism 
in the tail fl ick assay with an ED 50  ratio of 9.1 (U50,488) at 
kappa receptors compared with 1.8 for mu (morphine) and 
1.3 for delta (DPDPE) receptors. 65  The in vivo kappa opioid 
effects appeared to be short-term agonism (peak at one-half 
hour, duration less than 4 hours), followed by long-term 
antagonism (peak at 4 hours, duration of 48 hours). 65  Por-
toghese notes (Change et al 64 ) that  � -chlornaltrexamine 
( � -CNA) (another affi nity label, for mu opioid receptors) 
also displays short-term agonism followed by long-term 
antagonism.      

  ADDITIONAL INFORMATION 
 While in review, an article was published by the Husbands 
group detailing additional information about the norBNI 

pharmacophore (Chauvignac et al 66 ). This work showed that 
benzylation of the pyrrole nitrogen in norBNI ( 11 ) and its 
17, 17 ’ -diNmethyl analog ( 16 ) produced compounds with 
mu opioid partial agonism. This was a change in effi cacy for 
the benzylated norBNI ( 146 ) ( Figure 45 ), which displayed 
mu opioid partial agonism in the [ 35 S]GTP � S assay (EC 50  
187 nM, 38% stimulation) and also some kappa opioid 
 partial agonism (EC 50  1906 nM, 29% stimulation). The 17, 
17 ’ -diNmethyl analog ( 147 ) had increase potency in the 
[ 35 S]GTP � S assay EC 50  526 nM, compared with EC 50  1388 
nM for compound  16 . These fi ndings represent a signifi cant 
addition to the pharmacophore of norBNI-based analogs.    

  TIME COURSE OF KAPPA OPIOID RECEPTOR 
ANTAGONISTS 
 Two interesting characteristics of currently described kappa 
opioid receptor antagonists are their delay in onset of action 

  Figure 23.    Structure of 14 ’ -Desoxy analog of 
norBinaltorphimine.   

  Figure 24.    Structure of tritiated analog of norBinaltorphimine.   

  Figure 25.    Structures of amidine kappa opioid antagonists.   

  Table 8.        Antagonist Potency in the [ 35 S]GTP � S assay in Guinea 
Pig Caudate Membranes *,49      

 K i  (nM)
Antagonist ( � ) ( � ) ( � )  � � �   � � � 
norBNI ( 11 ) 0.038 16.7 10.2 439 268
 45 0.13 5.55 >300 43 >2307

 * NorBNI indicates norbinaltorphimine.    

  Table 7.        Opioid Antagonist Activities of norBNI and N-17 ’  
substituted analogs in the GPI and MVD *,48  

 IC 50  ratio Selectivity ratio
Antagonist ( � ) ( � ) ( � )  � � �   � � � 
norBNI ( 11 ) 181 8.3 10.4 22 17
 32 41 1.9 8.5 22 4.8
 33 22 1.6 6.3 14 3.5
 34 61 1.8 1.9 34 32
 35 27 3.1 3.1 8.7 8.7
 36 44 1.8 2.4 24 18
 37 26 4.5 4.6 5.7 5.7
 38 20 1.6 1.9 12.5 10
 39 27 1.7 1.0 15 27
 40 4.3 1.8 2.8 2.4 1.5
 41 11.8 1.4 2.2 8.4 5.4
 42 9.6 2.0 0.67 4.8

 * GPI indicates guinea pig ileum assay; MVD, mouse vas deferens 
assay; norBNI, norbinaltorphimine.    
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and their long duration of action. Both norBNI and GNTI 
display these characteristics, and recently JDTic has been 
confi rmed as having a similarly long duration of action and 
delayed onset of action. 
 All 3 kappa opioid antagonists (norBNI, GNTI, JDTic) 
show a delay in the onset of their effects as kappa opioid 
antagonists. The slow onset of kappa opioid antagonists 
is discussed by Negus et al 67  as  “ unusual among opioid 
antagonists … For comparison, the mu-[and kappa] selec-
tive opioid antagonist quadazocine and the delta-selec-
tive opioid antagonist naltrindole produce their peak 
effects in less than one hour, and these antagonist effects 
lasted less than one day. ”  Citing other articles, 68  ,  69  
GNTI, 67  JDTic, 70  and norBNI 71  all produce their peak 
effects after 24 hours. GNTI did not alter the ED 50  of 
morphine after 1 hour or 1 day 67  and norBNI is not selec-
tive for kappa antagonism over mu opioid antagonism 
until after 24 hours. 72  ,  73  
 NorBNI has been reported to have various long durations 
of action when administered peripherally and centrally in 
several different species. In peripheral administration, 
norBNI produced the following results. In one study 72  
male ddY mice were administered norBNI subcutaneously 
(s.c.) and retained kappa antagonistic actions in the tail 
pinch test for as long as 4 and 8 days (no end time limit 
reported). In another study, 71  rhesus monkeys were admin-
istered norBNI s.c. and experienced kappa opioid antago-
nism as long as 14 and 21 days in the tail withdrawal assay. 
A third study 73  reports after administration of norBNI s.c., 
male NIH mice experienced kappa opioid antagonism for 
at least 4 weeks in the writhing assay, but did not retain 
kappa opioid antagonist effects at 8 weeks. In a fourth 
study, administration of norBNI s.c. to rhesus monkeys 
signifi cantly blocked U-50,488 (kappa opioid agonist) 
attenuation of morphine-induced scratching through 21 
days after norBNI administration. 74  Upon central adminis-
tration, norBNI also displays a long duration of action. 
One study 75  showed that Sprague-Dawley rats experienced 

kappa antagonism, after intracisternal (i.c.) administration 
of norBNI, at 1, 7, and 21 days in the paw-lick and hot-
plate tests. Another study 76  reports kappa opioid antago-
nism after i.c.v. administration of nor-BNI in male ICR 
mice for up to 28 days in the tail fl ick test. A study in 

  Table 9.        Opioid Antagonist Activities of NTI and 5 ′  substituted 
analogs in the GPI and MVD *,51  

  Selectivity
 IC 50  ratio ratio
Antagonist ( � ) ( � ) ( � )  � � �   � � � 

NTI ( 5 ) 1.3 11.2 459
norBNI ( 11 ) 181 8.3 10.4 22 17
 47 159 11.3 2.28 14 69
 48 185 19.3 3.00 10 62
 49 439 15.7 4.71 28 93

  * NTI indicates naltrindole; GPI, guinea pig ileum assay; MVD, mouse 
vas deferens assay; norBNI, norbinaltorphimine.    

  Figure 26.    Structures of guanidinenaltrindole analogs.   
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Sprague-Dawley rats 10  showed that i.c.v. norBNI had anti-
depressant-like activity in the forced swim test at 48 and 
72 hours after administration, which was similar to and 
directly compared with GNTI. A third study 77  reports that 
rhesus monkeys administered norBNI i.c. experienced 
kappa opioid antagonism 49 days after administration in 
the tail withdrawal assay. In a study conducted with 
pigeons, norBNI was ineffective at 1 hour, displayed a 

 Table 10.        Opioid Antagonist Activities of GNTI and analogs in 
the GPI and MVD *,24  

 K e  in nM K e  ratio
Antagonist ( � ) ( � ) ( � )  � / �   � / � 
norBNI ( 11 ) 0.4 a 13 11 31 33  � / � 
 50 17 6.3  � / � 41  � / � 
 51 0.7 16 22 142  � / � 
 52 2.2 22  � / � 26 i 
 53 57 1.5  � / � 0.4  � / � 
 54 34 61 18 1.8 0.5
 55 2.1 15  � / � 21  � / � 
 56 1.0 16 15 52  � / � 
 57 6.1 8.8 1.4 17.3  � / � 
ANTI ( 58 ) 0.3 a 7.6 18 27 65
GNTI ( 12 ) 0.2 a 30 193 366  � / � 
 59 0.6 11 19 172  � / � 
 60 1.7 12 3.4 7.3 2.0
 61 0.2 14 74 512  � / � 
 62 6.8 36 5.3 6.6  � / � 
 63 0.8 9.8 12 87  � / � 
 64 3.2 13  � / � 18  � / � 
 65 3.1 13  � / � 9.1  � / � 
 66 0.7 4.0 6.2 154  � / � 
 67 0.4 a 5.7 13 96  � / � 
 68 3.1 16 9.1 5.1 2.9
 69 2.9 18 5.9 6.2 2.0
 70 7.2 38 5.3 12  � / � 
 71 0.5 a 16 33 115  � / � 

  All compounds tested at 100nM except  a Tested at 20nM. 
 *GNTI indicates guanidinonaltrindole; GPI, guinea pig ileum assay; 
MVD, mouse vas deferens assay; norBNI, norbinaltorphimine; ANTI, 
5’-acetamidinoethylnaltrindole. 

  Figure 27.    Structure of amidine guanidinenaltrindole analog.   

  Figure 28.    Structures of guanidinenaltrindole positional isomers.   

  Figure 29.    Structures of amide and amidine guanidinenaltrindole 
analogs.   

  Figure 30.    Structures of urea guanidinenaltrindole analogs.   

3-fold reduction in kappa agonist potency at 8 days, a 10-
fold reduction in agonist potency between 2 and 3 weeks, 
with control sensitivity returning only at 112 days. 78  These 
studies show that the duration of a single, smallest effec-
tive dose of norBNI is on the order of weeks in rats, mice, 
and monkeys, and months in pigeons. 
 GNTI and JDTic also demonstrate long durations of action. 
A study 67  showed rhesus monkeys receiving intramuscular 
(i.m.) GNTI experienced signifi cant kappa antagonism at 2 
days, lasted as long as 10 days in some of the monkeys, and 
returned to control in 14 days in the schedule controlled 
behavior assay. GNTI also displays a long duration of action 
when administered centrally. A study in Sprague-Dawley 
rats 10  showed that i.c.v. GNTI had antidepressant like activ-
ity in the forced swim test at 48 and 72 hours after adminis-
tration, which was similar to and directly compared with 
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squirrel monkeys i.m., they displayed a right shift in the 
antinociceptive (shock titration) ED 50  of U50,488 (a kappa 
opioid agonist) up to 10 days after administration. Also in 
this same paper, JDTic and norBNI both showed signifi cant 
reduction of U50,488-induced diuresis in Sprague-Dawley 
rats up to 3 weeks.  

  IN VIVO EFFECTS 
 NorBNI has demonstrated selective kappa opioid antago-
nism of antinociceptive responses in the tail fl ick assay in 
mice i.c.v. 76  ,  79  and s.c, 79  in the mouse antiwrithing assay 
i.c.v 72,79  and s.c, 73  in the tail withdraw assay in rhesus 

  Figure 31.    Structures of amidine guanidinenaltrindole analogs.   

  Figure 32.    Structures of amide guanidinenaltrindole analogs.   

  Table 11.        Antagonist Activities in the [ 35 S]GTP � S assay in 
Human Recombinant Receptors in CHO cells *,54      

 K i  (nM)
Antagonist ( � ) ( � ) ( � )  � � �   � � � 
norBNI ( 11 ) 0.04 18.9 4.42 484 113
 76 0.48 4.94 0.38 10 1
 77 0.35 3.17 0.30 9 1
 78 0.46 3.37 0.23 7 0.5
 79 0.21 3.78 1.79 18 9
 80 0.24 4.70 1.77 20 7
 81 0.18 4.21 1.89 23 11
 82 0.17 5.33 3.31 31 20
 83 0.32 14.73 5.23 46 16
 84 2.47 1.60 0.65 0.6 0.3
 85 1.52 1.63 0.53 1 0.3
 86 1.71 1.79 1.04 1 0.6
 87 0.05 3.19 4.41 64 88
 88 0.21 5.61 3.83 27 18
 89 0.37 2.04 5.83 6 16
 90 0.29 6.86 6.95 24 24
 91 0.73 4.40 2.99 6 4
 92 0.17 2.70 1.21 16 7
 93 0.26 2.78 5.15 10 20
 94 0.28 0.94 6.20 3 22

  * CHO indicates Chinese hamster ovary; norBNI, norbinaltorphimine.    

nor-BNI. JDTic ( Figure 2 ) was reported to have a long dura-
tion of action, which is comparable with GNTI. 67  This ini-
tial report 67  was confi rmed in a recent study 70  that showed 
JDTic (p.o. or s.c.) had kappa opioid antagonist effects at 24 
hours, 7 days, and 28 days in male ICR mice in the tail fl ick 
test. In the same study, JDTic showed that when given to 

  Figure 33.    Structures of substituted guanidinenaltrindole analogs.   

  Figure 34.    Structures of substituted guanidinenaltrindole analogs.   

  Figure 35.    Structures of di-substituted guanidinenaltrindole 
analogs.   

  Figure 36.    Structures of di-substituted guanidinenaltrindole 
analogs.   
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  Table 12     .   Antagonist Potency in the [ 35 S]GTP � S assay in 
Cloned Human Opioid Receptors *,55     

 K i  (nM)
Antagonist ( � ) ( � ) ( � )  � / �   � / � 
norBNI ( 11 ) 0.04 18.9 4.42 484 113
GNTI ( 12 ) 0.04 3.23 15.49 81 389
 60 0.40 1.25 0.88 3 2
 95 0.13 2.94 1.36 23 10
 96 0.23 2.61 1.48 11 6
 97 0.17 2.20 1.34 13 8
 98 0.25 1.57 0.95 6 4
 99 0.06 1.41 4.09 24 68
 100 0.14 5.24 7.67 37 55
 101 0.18 3.71 16.66 21 93
 102 0.09 1.22 10.80 14 120
 103 0.10 12.66 18.31 127 183
 104 0.13 4.28 4.35 33 33
 105 0.39 4.62 1.05 12 3
 106 0.44 5.66 5.24 13 12
 107 0.26 4.59 2.43 18 9
 108 0.08 3.26 6.31 41 79
 109 0.17 2.75 3.28 16 19

     * norBNI indicates norbinaltorphimine; GNTI, guanidinonaltrindole.    

Table 14. Antagonist Potency in the [ 35 S]GTP � S assay in 
Guinea Pig Caudate Membranes *,29 

 K e  (nM)
Antagonist ( � ) ( � ) ( � )  � � �   � � � 
norBNI ( 11 ) 0.038 16.7 10.2 440 268
JDTic ( 111 ) 0.02 2.16 >300 108 >15000
 112 4.7 7.25 450 1.5 96
 118 4.2 11 327 2.6 78
 119 11.5 68.6 147 5.9 12.8
 120 44.6 12 334 0.3 7.5
 121 30 16.5 452 0.55 15
 122 0.20 12.8 >300 64 >15000
 123 0.37 12.7 >300 34 810
 124 19.6 17.4 >300 0.9 15
 125 0.16 29 628 181 3925
 126 16.7 178 >300 10.7 >18

 * norBNI indicates norbinaltorphimine.    

  Table 13.        Antagonist Potency in the [ 35 S]GTP � S assay in 
Guinea Pig Caudate Membranes 57      

 K i  (nM) 
Antagonist ( � )  ( � ) ( � )  � / �   � / � 
norBNI ( 11 ) 0.038 16.7 10.2 439 268
JDTic ( 111 ) 0.02 2.16 >300 108 >15000
 112 4.7 7.25 450 1.5 96

  

  Table 15.        Antagonist Potency in the [ 35 S]GTP � S assay in 
Guinea Pig Caudate Membranes *,49      

 K i  (nM)
Antagonist ( � )  ( � ) ( � )  � � �   � � � 
norBNI ( 11 ) 0.038 16.7 10.2 439 268
 45 0.13 5.55 >300 nM 43 >2307
JDTic ( 111 ) 0.02 2.16 >300 108 >15000
 110 11.5 68.6 213 6 18
 119 4.7 7.25 450 1.5 96

 * norBNI indicates norbinaltorphimine.    

monkeys i.c. 77  and s.c 71 , in the hot plate test in rats i.c, 75  and 
in the tail pinch assay in mice s.c. 72  NorBNI has also sup-
pressed kappa opioid agonist – induced diuresis in the rat 
s.c. 80  and i.c. 81  BNI demonstrated selective kappa opioid 
antagonist activity in the mouse writing assay 90 minutes 
pretreatment time. 29  
 JDTic has demonstrated 70  selective kappa opioid antago-
nism of antinociceptive responses in the mouse tail fl ick test 
p.o. or s.c., shock titration assay in squirrel monkeys i.m., 
and also suppressed kappa opioid agonist – induced diuresis 
s.c. in rats. 
 Potentially the most exciting work with kappa opioid antag-
onists has been their effects on the behaviors induced by the 
administration of cocaine. Experimentally naive rats pre-
treated (48 hours) with s.c. norBNI had decreased intake of 
cocaine when offered at reinforcement threshold level, but 

not when cocaine was presented at higher, double-threshold 
level, doses. 9  In one study, the aversive effects of cocaine-
conditioned place preference were blocked in rats pretreated 
with norBNI, which had also been given herpes simplex 
virus vector delivering cAMP response element binding 
protein (HSV-CREB). 82  In a following study, 83  rats given 
HSV-CREB and treated with norBNI displayed increased 

  Figure 37.    Structure of pyridomorphinan guanidinenaltrindole 
analog.   
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latencies to become immobile in the forced swim test, which 
were similar to rats given HSV-mCREB, which downregu-
lates dynorphin production, and sham surgery (indicating 
an antidepressant effect of norBNI). Another study pre-
sented data that demonstrated mice pretreated with norBNI 
and exposed to stress via the forced swim test did not 
develop increased sensitivity to cocaine-conditioned place 
preference testing, which non-norBNI – treated mice devel-
oped, 84  again indicating an antidepressant-like effect of 
norBNI. 
 Another exciting area where kappa opioid antagonists are 
being explored as therapeutic agent is their potential use in 
the treatment of depression. The kappa opioid antagonists 
norBNI i.c.v., GNTI i.c.v., and ANTI intraperitoneal (i.p.) 
all displayed antidepressant-like activity in the forced swim 

  Figure 38.    Structures of JDTic and its lead compound.   

test. 10  A recent study 85  of norBNI, administered s.c. in male 
CD1 mice, showed no effect in the forced swim test, how-
ever, it must be noted that norBNI was administered only 30 
minutes before the test, a time when norBNI is not effective 
as a selective kappa opioid antagonist. 71-73  A study of nor-
BNI in Sprague-Dawley rats showed an antidepressant-like 
effect in the learned helplessness model when norBNI was 
injected i.c.v., and intra-accumbens, but not when injected 
into the hippocampus (all trials conducted 3 days after injec-
tion). 86  Another study of norBNI showed an antidepressant 
effect in the learned helplessness model when injected into 
the hippocampus and the nucleus accumbens of male 
Sprague-Dawley rats. 87  
 Scratching behavior has also been attributed to administra-
tion of kappa opioid antagonists. In one study, 88  norBNI 
administered s.c. produced dose-dependant scratching 
behavior (at the injection site) in IRC mice beginning within 
5 minutes of injection and disappeared within 2 hours. This 
effect was dose-dependently reversed with both a hista-
mine  antagonist (chlorpheniramine) and a kappa agonist 
(U-50,488). 88  In another study, 89  GNTI administered s.c. to 
male Swiss mice precipitated frenzied scratching (at the site 
of injection) within 5 minutes, which tapered off between 
40 and 80 minutes. This behavior was decreased by 
 pretreatment with both centrally active (enadoline) and 
peripherally active (ICI 204448) kappa opioid agonists. 
Additionally the study indicated that i.c.v. and intrathecal 
(i.t.) administration of GNTI did not produce the scratching 
behavior. Other studies indicate that norBNI did not affect 
scratching behavior. When norBNI was administered s.c. to 

  Figure 39.    Structures of phenylmorphan JDTic analogs.   

  Figure 40.    Structures of JDTic analogs.   
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  Figure 41.    Structures of JDTic analogs.   

male ICR mice there was no scratching effect noted after 24 
hours, 90  but no description was given for the prior 24-hour 
time period immediately following the injection of norBNI. 
When norBNI was administered to rhesus monkeys s.c. 
there were no scratching responses detected in the 3 hours 
following injection and also none 24 hours after administra-
tion. 91  This administration of s.c. norBNI signifi cantly 
blocked U-50,488 attenuation of morphine-induced scratch-
ing for a period 21 days after norBNI administration. 91  
Another study in which norBNI was administered i.c.v. to 
male ddY mice, notes that norBNI treatment did not affect 
scratching behavior. 92  Taken together, these studies suggest 
that administration of a s.c. dose of kappa opioid antagonist 

may produce scratching behavior, however this behavior 
occurs during a time period (immediately following injec-
tion) when kappa opioid antagonist effects are inconsistent. 
After a time period of 24 hours or more after administration, 
when kappa opioid antagonists display kappa opioid antag-
onistic effects, there has been no induction of scratching 
behavior reported. 

 Feeding behavior is another area where kappa opioid antag-
onists have been studied for their impact. NorBNI has pro-
duced the following: reduction of butorphanol-induced 
feeding in male Sprague-Dawley rats, 93  reduction in weight 
and food intake in lean and obese Zucker rats, 94  reduction 
of deprivation-induced food intake in rats, 95  reduction 
of sucrose intake in sham-fed rats, 96  reduction of GABA 
agonist –  induced feeding in male Sprague-Dawley rats, 97  
reduction of NPY-induced feeding in male Sprague-Dawley 
rats, 98  reduction of glucose solution intake in female Long-
Evans rats. 99  GNTI has been shown to reduce U50,488-, 
DAMGO-, and deprivation-induced feeding behavior in 
rats. 11  

 Both norBNI and GNTI have been explored in various other 
pharmacological models. NorBNI has also been studied for 
various other effects on systems including enhancement of 
morphine-induced sensitization in the rat, 100  the  hypothalamic 

  Table 16.        Antagonist Potency in the [ 35 S]GTP � S assay in 
Human Cloned Opioid Receptors *,61     

 K i  (nM)
Antagonist ( � ) ( � ) ( � )
norBNI ( 11 ) 0.039 18.9 4.42
NTX ( 9 ) 1.86 0.59 5.44
NTI ( 5 ) 4.95 4.26 0.11
 137 42.7 67.7 NT
 140 49.3 agonist NT
 141 2.12 2.62 26.3

    * norBNI indicates norbinaltorphimine; NTI, naltrindole; NTX, 
naltrexone.      Figure 42.    Structures of aminotetralins.   
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pituitary-axis, 101  modulation of morphine-induced reward, 102  
instrumental learning in the spinal cord, 103  decrease of 
THC-  induced place aversion, 104  reversal of kappa opioid 
agonist – induced increases of [ 35 S]GTP � S binding, 105  
enhanced binding in butorphanol-dependent rats, 106  en -
hancement of noradrenalin release, 107  kappa opioid inhibi-
tory tone, 108  the enhancement of allodynia, 109  antagonism 
of kappa opioid agonist induced hypothermia, 110  antago-
nism of the effects of kappa agonist anticonvulsant effects 
in the maximum electroshock seizure model, 111  increases in 
the activity of tuberohypophysial dopamine neurons in male 
Long-Evans rats, 112  effects on the heart, 113-115  attenuation 
of the discriminative stimulus effects of kappa agonists in 
squirrel monkeys, 116  and attenuation of kappa agonist –
 induced food-reinforced responding in pigeons 78  ,  117  and 
rats. 118  

 GNTI has been studied for its effects on systems including: 
the enhancement of allodynia, 109  antagonism of the effects 
of kappa opioid agonists in schedule controlled behavior in 
rhesus monkeys, 67  and antagonism of the discriminative 
stimulus effects of salvinorin A (a kappa opioid agonist) in 
rhesus monkeys. 30   

  CONCLUSIONS 
 Selective kappa opioid antagonists have been sought since 
the discovery of multiple opioid receptor types in the 1970s. 
Several compounds with kappa opioid selective pharmacol-
ogy are now available for further research and numerous lead 
compounds have been presented that provide excellent candi-
dates for future development. The structure activity relation-
ships of the currently known selective kappa opioid antagonists 
indicate the need for a traditional antagonist pharmacophore 
that contains a second basic nitrogen. The pharmacology of 
the selective kappa opioid antagonists shows a delay in onset 
of action, a very long duration of action, and presents various 
possibilities for the treatment of human disease states.  
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